Exercise training improves renal excretory responses to acute volume expansion in rats with heart failure

Author:

Zheng Hong,Li Yi-Fan,Zucker Irving H.,Patel Kaushik P.

Abstract

Experiments were performed to test the postulate that exercise training (ExT) improves the blunted renal excretory response to acute volume expansion (VE), in part, by normalizing the neural component of the volume reflex typically observed in chronic heart failure (HF). Diuretic and natriuretic responses to acute VE were examined in sedentary and ExT groups of rats with either HF or sham-operated controls. Experiments were performed in anesthetized (Inactin) rats 6 wk after coronary ligation surgery. Histological data indicated that there was a 34.9 ± 3.0% outer and 42.5 ± 3.2% inner infarct of the myocardium in the HF group. Sham rats had no observable damage to the myocardium. In sedentary rats with HF, VE produced a blunted diuresis (46% of sham) and natriuresis (35% of sham) compared with sham-operated control rats. However, acute VE-induced diuresis and natriuresis in ExT rats with HF were comparable to sham rats and significantly higher than sedentary HF rats. Renal denervation abolished the salutary effects of ExT on renal excretory response to acute VE in HF. Since glomerular filtration rates were not significantly different between the groups, renal hemodynamic changes may not account for the blunted renal responses in rats with HF. Additional experiments confirmed that renal sympathetic nerve activity responses to acute VE were blunted in sedentary HF rats; however, ExT normalized the renal sympathoinhibition in HF rats. These results confirm an impairment of neurally mediated excretory responses to acute VE in rats with HF. ExT restored the blunted excretory responses as well as the renal sympathoinhibitory response to acute VE in HF rats. Thus the beneficial effects of ExT on cardiovascular regulation in HF may be partly due to improvement of the neural component of volume reflex.

Publisher

American Physiological Society

Subject

Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3