Nicotinamide ameliorates a preeclampsia-like condition in mice with reduced uterine perfusion pressure

Author:

Fushima Tomofumi1,Sekimoto Akiyo1,Oe Yuji2,Sato Emiko12,Ito Sadayoshi2,Sato Hiroshi12,Takahashi Nobuyuki12

Affiliation:

1. Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai Japan; and

2. Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan

Abstract

Preeclampsia (PE) is pregnancy-induced hypertension with proteinuria that typically develops after 20 wk of gestation. Antihypertensives currently used for PE reduce blood pressure of PE mothers but do not prevent preterm delivery and do not alleviate fetal growth restriction (FGR) associated with PE. We have recently shown that the activation of the endothelin (ET) system exacerbates PE. However, ET receptor antagonists are teratogenic and not suitable for pregnant women. The vitamin B3 nicotinamide (Nam) inhibits vasoconstriction by ET and is generally considered safe and harmless to babies. Nam also alleviates oxidative stress, which exacerbates PE and FGR. The aim of the present study was to evaluate therapeutic effects of Nam on the PE-like phenotype using a reduced uterine perfusion pressure (RUPP) model in mice that we have recently developed. We bilaterally ligated uterine vessels of pregnant mice and administered Nam or water daily by gavage. Nam improved maternal hypertension, proteinuria, and glomerular endotheliosis in RUPP mice. Moreover, Nam prolonged pregnancies and improved survival and growth of the embryos in RUPP PE mice. In conclusion, Nam alleviates the PE-like phenotype and FGR in the murine RUPP model. Nam could help treat maternal hypertension and FGR in human PE.

Funder

Japan Society for the Promotion of Science (JSPS)

Ministry of Education, Culture, Sports, Science, and Technology (MEXT)

Naito Foundation

Miyagi Kidney Foundation

Tohoku University

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3