Affiliation:
1. Nephrology Research, Department of Veterans Administration Salt Lake City Health Care System,
2. Departments of 2Medicine and
3. Department of Medicine, Georgetown University, Washington, District of Columbia
4. Physiology and
5. Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah; and
Abstract
The P2Y2receptor (P2Y2-R) antagonizes sodium reabsorption in the kidney. Apart from its effect in distal nephron, hypothetically, P2Y2-R may modulate activity/abundances of sodium transporters/channel subunits along the nephron via antagonism of aldosterone or vasopressin or interaction with mediators such as nitric oxide (NO), and prostaglandin E2(PGE2) or oxidative stress (OS). To determine the extent of the regulatory role of P2Y2-R in renal sodium reabsorption, in study 1, we fed P2Y2-R knockout (KO; n = 5) and wild-type (WT; n = 5) mice a high (3.15%)-sodium diet (HSD) for 14 days. Western blotting revealed significantly higher protein abundances for cortical and medullary bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), medullary α-1-subunit of Na-K-ATPase, and medullary α-subunit of the epithelial sodium channel (ENaC) in KO vs. WT mice. Molecular analysis of urine showed increased excretion of nitrates plus nitrites (NOx), PGE2, and 8-isoprostane in the KO, relative to WT mice, supporting a putative role for these molecules in determining alterations of proteins involved in sodium transport along the nephron. To determine whether genotype differences in response to aldosterone might have played a role in these differences due to HSD, in study 2 aldosterone levels were clamped (by osmotic minipump infusion). Clamping aldosterone (with HSD) led to significantly impaired natriuresis with elevated Na/H exchanger isoform 3 in the cortex, and NKCC2 in the medulla, and modest but significantly lower levels of NKCC2, and α- and β-ENaC in the cortex of KO vs. WT mice. This was associated with significantly reduced urinary NOx in the KO, although PGE2and 8-isoprostane remained significantly elevated vs. WT mice. Taken together, our results suggest that P2Y2-R is an important regulator of sodium transporters along the nephron. Pre- or postreceptor differences in the response to aldosterone, perhaps mediated via prostaglandins or changes in NOS activity or OS, likely play a role.
Publisher
American Physiological Society
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献