Affiliation:
1. Department of Physiology and Pharmacology, College of VeterinaryMedicine, University of Georgia, Athens 30602.
Abstract
Adequate oxygenation was a major factor regulating the induction of glycolytic metabolism in primary cultures of rabbit renal proximal tubule cells during short-term (less than 1 day) and long-term (1-7 day) culture. As measured by cellular lactate content, glucose consumption, and lactate dehydrogenase activity, less glycolytic metabolism was induced in cultured cells that were constantly aerated than in cells that were held stationary. When oxidative metabolism is supported by providing 2-10 mM heptanoate (HEP) as a metabolic substrate glycolytic metabolism further decreased during short-term, but not long-term culture. Cellular proliferation did not play a major role in regulating the induction of glycolytic metabolism, since glycolytic metabolism increased before cell growth had occurred, did not decline once logarithmic cell growth had ceased, and was stimulated less by cell growth than by inadequate oxygenation. Fructose-1,6-bisphosphatase and alkaline phosphatase, representative markers of gluconeogenic and brush-border membrane enzyme activities, respectively, declined during culture regardless of culture conditions or the presence of HEP. Therefore, glycolytic metabolism can be effectively minimized by constantly aerating cultured proximal tubule cells and can be further reduced by the addition of HEP during short-term culture.
Publisher
American Physiological Society
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献