Renal innervation plays no role in oxygen-dependent control of erythropoietin mRNA levels

Author:

Eckardt K. U.1,LeHir M.1,Tan C. C.1,Ratcliffe P. J.1,Kaissling B.1,Kurtz A.1

Affiliation:

1. Physiologisches Institut Universitat Regensburg, Federal Republic of Germany.

Abstract

To assess the role of renal innervation in O2-dependent control of erythropoietin (EPO) formation, we have determined EPO mRNA levels in both kidneys of unilaterally denervated rats and sham-operated controls using RNase protection. To investigate whether possible effects of renal nerve input are related to the type of hypoxic stimulus and the degree of stimulation, animals were studied under basal conditions, after exposure to normobaric hypoxia (8% O2, 4 h) or CO (0.1%, 4 h), and after acute hemorrhage (decrease in hematocrit from 40.8 +/- 0.5 to 12.7 +/- 0.5% within 7 h; mean +/- SE, n = 6). Serum EPO levels rose on average 22-, 49-, and 48-fold under the three stimuli and were unaffected by unilateral denervation. Renal EPO mRNA levels in unilaterally denervated animals, when expressed in arbitrary units revealed by comparison with an external standard, were 7.0 +/- 1.5 vs. 6.3 +/- 2.0 (normoxia), 432 +/- 136 vs. 451 +/- 156 (normobaric hypoxia), 971 +/- 93 vs. 930 +/- 120 (CO), and 604 +/- 170 vs. 689 +/- 203 (hemorrhagic anemia) in the intact vs. the denervated kidney (mean +/- SE, n = 3). Furthermore, there was no difference between EPO mRNA levels of either kidney of unilaterally denervated animals and levels in sham-operated controls. We conclude that renal nerve input plays no significant role in the control of the EPO gene under both basal and stimulated conditions.

Publisher

American Physiological Society

Subject

Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3