Cyclosporin and quinidine inhibition of renal digoxin excretion: evidence for luminal secretion of digoxin

Author:

De Lannoy I. A.1,Koren G.1,Klein J.1,Charuk J.1,Silverman M.1

Affiliation:

1. Department of Medicine, University of Toronto, Ontario, Canada.

Abstract

We studied the in vivo luminal and contraluminal uptake of [3H]digoxin in dog kidney using the single-pass multiple indicator dilution method. A bolus tracer of 125I-albumin (plasma reference), creatinine, or L-[14C]glucose [extracellular reference (ecf)] and [3H]digoxin (or [3H]ouabain) was injected into the left renal artery, and timed serial samples were collected from the left renal vein (basolateral uptake) and left and right ureters (luminal uptake). [3H]ouabain was excreted solely by filtration and exhibited saturable and irreversible binding at the basolateral surface. Uptake of [3H]digoxin across the basolateral membrane was large and nonsaturable. Despite urine flow-dependent reabsorption and approximately 20% protein binding, the urine recovery ratio for [3H]-digoxin/glomerular (ecf) marker was 0.97 +/- 0.04 (n = 29), indicating net digoxin secretion. After intravenous infusions of cyclosporin in Cremophor EL (0.5-3.5 microM), the urine recovery ratio decreased in a dose-dependent manner from control values of 1.13 +/- 0.06 (n = 12) to 0.62 +/- 0.03 (n = 14). There was no change in the relative renal vein recovery. Left renal artery infusion of quinidine (37.5 micrograms.min-1.kg-1) decreased the relative urine recovery of [3H]digoxin by 46% (n = 6) but had no effect on postglomerular extraction. Cyclosporin and quinidine are known inhibitors of P-glycoprotein. But digoxin did not compete with [3H]azidopine for binding in rat brush-border membranes or membranes prepared from the multidrug-resistant cell line CHRC5. The exact mechanism for renal digoxin secretion remains to be determined, but our results point to a luminal localization of this secretory system.

Publisher

American Physiological Society

Subject

Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3