Regulation of glutamine metabolism in dog kidney cortex: effect of pH and chronic acidosis

Author:

Schoolwerth A. C.1,Smith B. C.1,Drewnowska K.1

Affiliation:

1. Department of Internal Medicine, Medical College of Virginia, Richmond23298.

Abstract

To examine the interrelationships of proton compartmentation and ammoniagenesis, experiments were performed in tubules and mitochondria isolated from dog kidney cortex. Tubules were incubated in Krebs-Henseleit buffer at different pH (pHe), and cytosolic pH (pHi) was estimated with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Mitochondrial pH (pHm) was determined simultaneously in intact tubules by use of dimethyloxazolidine-2,4-dione. Over the pHe range 6.9-7.7, pHi was similar in control and acidotic dogs and linearly related to pHe. At pHe 7.4 in control tubules. pHm was 7.78 +/- 0.07, and varied little over the pHe range of 7.0-7.7. The pH gradient across the mitochondrial membrane rose at acid pHe. pHm was more alkaline when estimated in tubules from acidotic dogs compared with controls. Ammonium and glucose productions from glutamine were inversely related to pHe and pHi in tubules from both control and acidotic animals and were higher in acidosis. In contrast, ammonium production by isolated mitochondria did not vary as pHe was altered. Enzyme fluxes, calculated from metabolite changes, demonstrated that glutamate dehydrogenase (GDH) flux was altered. Enzyme fluxes, calculated from metabolite changes, demonstrated that glutamate dehydrogenase (GDH) flux was inversely and glutaminase (PDG) flux was linearly related to pHe. Ammonium production was significantly greater in mitochondria from acidotic dogs because of accelerated flux through PDG but not GDH. The present study demonstrates significant difference between proton compartmentation and regulation of ammoniagenesis in kidneys from acidotic dog compared with rat.

Publisher

American Physiological Society

Subject

Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3