Na(+)-Ca2+ exchanger of rat proximal tubule: gene expression and subcellular localization

Author:

Dominguez J. H.1,Juhaszova M.1,Kleiboeker S. B.1,Hale C. C.1,Feister H. A.1

Affiliation:

1. Nephrology Section, Veterans Affairs Medical Center, Indianapolis, Indiana.

Abstract

The activity of the Na(+)-Ca2+ exchanger, a membrane transporter that mediates Ca2+ efflux, has been described in amphibian and mammalian renal proximal tubules. However, demonstration of cell-specific expression of the Na(+)-Ca2+ exchanger in proximal renal tubules has been restricted to functional assays. In this work, Na(+)-Ca2+ exchanger gene expression in rat proximal tubules was characterized by three additional criteria: functional assay of transport activity in membrane vesicles derived from proximal tubules, expression of specific Na(+)-Ca2+ exchanger protein detected on Western blots, and determination of specific mRNA encoding Na(+)-Ca2+ exchanger protein on Northern blots. A new transport activity assay showed that proximal tubule membranes contained the highest Na(+)-Ca2+ exchanger transport activity reported in renal tissues. In dog renal proximal tubules and sarcolemma, a specific protein of approximately 70 kDa was detected, whereas in rat proximal tubules and sarcolemma, the specific protein approximated 65 kDa and was localized to the basolateral membrane. On Northern blots, a single 7-kb transcript isolated from rat proximal tubules, whole kidney, and heart hybridized under high-stringency conditions with rat heart cDNA. These data indicate that Na(+)-Ca2+ exchanger protein expressed in rat proximal tubule is similar, if not identical, to the cardiac protein. We suggest that the tubular Na(+)-Ca2+ exchanger characterized herein represents the Na(+)-Ca2+ exchanger described in functional assays of renal proximal tubules.

Publisher

American Physiological Society

Subject

Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3