Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice

Author:

Oppermann Mona,Hansen Pernille B.,Castrop Hayo,Schnermann Jurgen

Abstract

Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or NG-nitro-l-arginine methyl ester, furosemide caused a dose-dependent increase of vascular diameter, but it was without effect in vessels from NKCC1−/− mice suggesting that inhibition of NKCC1 mediates dilatation in afferent arterioles. In the intact kidney, however, furosemide (2 mg/kg iv) caused a 50.5 ± 3% reduction of total renal blood flow (RBF) and a 27% reduction of superficial blood flow (SBF) accompanied by a marked and immediate increase of tubular pressure and volume. At 10 mg/kg, furosemide reduced RBF by 60.4 ± 2%. Similarly, NKCC1−/− mice responded to furosemide with a 45.4% decrease of RBF and a 29% decrease of SBF. Decreases in RBF and SBF and increases of tubular pressure by furosemide were ameliorated by renal decapsulation. In addition, pretreatment with candesartan (2 mg/kg) or indomethacin (5 mg/kg) attenuated the reduction of RBF and peak urine flows caused by furosemide. Our data indicate that furosemide, despite its direct vasodilator potential in isolated afferent arterioles, causes a marked increase in flow resistance of the vascular bed of the intact mouse kidney. We suggest that generation of angiotensin II and/or a vasoconstrictor prostaglandin combined with compression of peritubular capillaries by the expanding tubular compartment are responsible for the reduction of RBF in vivo.

Publisher

American Physiological Society

Subject

Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3