Author:
Oppermann Mona,Hansen Pernille B.,Castrop Hayo,Schnermann Jurgen
Abstract
Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or NG-nitro-l-arginine methyl ester, furosemide caused a dose-dependent increase of vascular diameter, but it was without effect in vessels from NKCC1−/− mice suggesting that inhibition of NKCC1 mediates dilatation in afferent arterioles. In the intact kidney, however, furosemide (2 mg/kg iv) caused a 50.5 ± 3% reduction of total renal blood flow (RBF) and a 27% reduction of superficial blood flow (SBF) accompanied by a marked and immediate increase of tubular pressure and volume. At 10 mg/kg, furosemide reduced RBF by 60.4 ± 2%. Similarly, NKCC1−/− mice responded to furosemide with a 45.4% decrease of RBF and a 29% decrease of SBF. Decreases in RBF and SBF and increases of tubular pressure by furosemide were ameliorated by renal decapsulation. In addition, pretreatment with candesartan (2 mg/kg) or indomethacin (5 mg/kg) attenuated the reduction of RBF and peak urine flows caused by furosemide. Our data indicate that furosemide, despite its direct vasodilator potential in isolated afferent arterioles, causes a marked increase in flow resistance of the vascular bed of the intact mouse kidney. We suggest that generation of angiotensin II and/or a vasoconstrictor prostaglandin combined with compression of peritubular capillaries by the expanding tubular compartment are responsible for the reduction of RBF in vivo.
Publisher
American Physiological Society
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献