Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved

Author:

Golbang Amir P.,Cope Georgina,Hamad Abbas,Murthy Meena,Liu Che-Hsiung,Cuthbert Alan W.,O’Shaughnessy Kevin M.

Abstract

The novel serine/threonine kinases (with no lysine kinases or WNKs), WNK1 and WNK4, are encoded by the disease genes for Gordon syndrome (PRKWNK1 and PRKWNK4), a rare monogenic syndrome of hypertension and hyperkalemia. These proteins alter the expression of the thiazide-sensitive Na/Cl cotransporter (NCCT) in Xenopus laevis oocytes, although the details are controversial. We describe here our own experience and confirm that kinase-dead WNK4 (318D>A) is unable to affect Na+fluxes through the thiazide-sensitive Na/Cl transporter (NCCT) or its membrane expression as an ECFP-NCCT fusion protein. However, the kinase domain is not sufficient for a functional WNK4 since deletion of the acidic motif (a motif unique to WNK family members) completely abolishes functional activity. Indeed, the NH2terminal of WNK4 (1–620) containing the kinase domain and acidic motif retains full activity, but does not interact directly with NCCT in pull-down assays. Coexpression of WNK1 antagonizes the action of WNK4, and kinase-dead WNK1 (368D>A) or WNK1 carrying a WNK4 disease mutation (565Q>E) behaves in the same way as wild-type WNK1. This suggests kinase activity and charge conservation within the acidic motif are not essential for the WNK1-WNK4 interaction. We also report that WNK4 probably reduces surface expression largely through an effect on forward trafficking. Hence, the effect of WNK4 on NCCT expression is mimicked by dynamin, but the dominant-negative K44A dynamin mutant does not block the action of WNK4 itself. These results further highlight important differences in the mechanism by which WNK kinases affect expression of NCCT vs. other membrane proteins such as ROMK.

Publisher

American Physiological Society

Subject

Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Many Cell Types Are in the Kidney and What Do They Do?;Annual Review of Physiology;2022-02-10

2. CCT and CCT-like Modular Protein Interaction Domains in WNK Signaling;Molecular Pharmacology;2021-07-26

3. Volume Regulation in Epithelia;Physiology in Health and Disease;2020

4. Thiazide-Sensitive NaCl Cotransporter;Studies of Epithelial Transporters and Ion Channels;2020

5. The Molecular Genetics of Gordon Syndrome;Genes;2019-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3