Low-dose carbon monoxide inhalation prevents development of chronic allograft nephropathy

Author:

Neto Joao Seda,Nakao Atsunori,Toyokawa Hideyoshi,Nalesnik Michael A.,Romanosky Anna Jeanine,Kimizuka Kei,Kaizu Takashi,Hashimoto Naoki,Azhipa Olga,Stolz Donna B.,Choi Augustine M. K.,Murase Noriko

Abstract

Chronic allograft nephropathy (CAN) is the primary cause for late kidney allograft loss. Carbon monoxide (CO), a product of heme metabolism by heme oxygenases, is known to impart protection against various stresses. We hypothesized that CO could minimize the chronic fibroinflammatory process and protect kidney allografts from CAN. Lewis kidney grafts were orthotopically transplanted into binephrectomized Brown-Norway rats under short-course tacrolimus. Recipients were maintained in room air or exposed to CO at 20 parts/million for 30 days after transplant. Efficacy of inhaled CO was studied at day 30 and day 80. Isografts maintained normal kidney function throughout the experiment with creatinine clearance of ∼1.5 ml/min. Renal allograft function in air controls progressively deteriorated, and creatinine clearance declined to 0.2 ± 0.1 ml/min by day 80 with substantial proteinuria. CO-treated animals had significantly better creatinine clearance (1.3 ± 0.2 ml/min) with minimal proteinuria. Histological examination revealed the development of progressive CAN in air-exposed grafts, whereas CO-treated grafts had minimal tubular atrophy and interstitial fibrosis, with negligible collagen IV deposition. In vitro analyses revealed that CO-treated recipients had significantly less T cell proliferation against donor peptides via the indirect allorecognition pathway and less anti-donor IgG antibodies compared with air controls. Intragraft mRNA levels for chemokines (regulated on activation normal T cell expressed and secreted, macrophage inflammatory protein-1α, chemokine receptors (CCR1, CXCR3, CXCR5), IL-2, and intercellular adhesion molecule-1 were significantly decreased in CO-treated than in air-treated allografts. Furthermore, reduction of blood flow in air-treated allografts was prevented with CO. In conclusion, inhaled CO at a low concentration efficiently abrogates chronic fibroinflammatory changes associated with CAN and improves long-term renal allograft function.

Publisher

American Physiological Society

Subject

Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3