Constitutively active PKA regulates neuronal acetylcholine release and contractility of guinea pig urinary bladder smooth muscle

Author:

Xin Wenkuan1,Li Ning1,Fernandes Vitor S.1,Petkov Georgi V.1

Affiliation:

1. Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina

Abstract

Autonomic and somatic motor neurons that innervate the urinary bladder and urethra control the highly coordinated functions of the lower urinary tract, the storage, and the emptying of urine. ACh is the primary excitatory neurotransmitter in the bladder. Here, we aimed to determine whether PKA regulates neuronal ACh release and related nerve-evoked detrusor smooth muscle (DSM) contractions in the guinea pig urinary bladder. Isometric DSM tension recordings were used to measure spontaneous phasic and electrical field stimulation (EFS)- and carbachol-induced DSM contractions with a combination of pharmacological tools. The colorimetric method was used to measure ACh released by the parasympathetic nerves in DSM isolated strips. The pharmacological inhibition of PKA with H-89 (10 μM) increased the spontaneous phasic contractions, whereas it attenuated the EFS-induced DSM contractions. Intriguingly, H-89 (10 μM) attenuated the (primary) cholinergic component, whereas it simultaneously increased the (secondary) purinergic component of the nerve-evoked contractions in DSM isolated strips. The acetylcholinesterase inhibitor, eserine (10 μM), increased EFS-induced DSM contractions, and the subsequent addition of H-89 attenuated the contractions. H-89 (10 μM) significantly increased DSM phasic contractions induced by the cholinergic agonist carbachol. The inhibition of PKA decreased the neuronal release of ACh in DSM tissues. This study revealed that PKA-mediated signaling pathways differentially regulate nerve-evoked and spontaneous phasic contractions of guinea pig DSM. Constitutively active PKA in the bladder nerves controls synaptic ACh release, thus regulating the nerve-evoked DSM contractions, whereas PKA in DSM cells controls the spontaneous phasic contractility.

Publisher

American Physiological Society

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3