Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells

Author:

Abouhamed Marouan,Wolff Natascha A.,Lee Wing-Kee,Smith Craig P.,Thévenod Frank

Abstract

Chronic exposure to Cd2+ causes renal proximal tubular (PT) damage. Cd2+ reaches the PT mainly as cadmium-metallothionein 1 (CdMT-1) complexes that are filtered at the glomerulus and then internalized in part via endocytosis mediated by megalin and cubulin. Subsequently, Cd2+ is thought to be released in the cytosol to activate cell death pathways. The proton-coupled divalent metal transporter DMT1 also transports Cd2+ and is expressed exclusively in endosomes/lysosomes in rat PT cells. Using vector-based RNA interference with short-hairpin small-interfering RNAs (shRNAs) to downregulate DMT1 in the rat renal PT cell line WKPT-0293 Cl.2, we tested the hypothesis that endosomal/lysosomal DMT1 is involved in CdMT-1 nephrotoxicity. One out of 5 shRNAs tested (sh3) significantly reduced expression of DMT1 protein detected by immunoblotting and DMT1 mRNA as determined by RT-PCR by 45.1 ± 9.6 and 36.9 ± 14.4% ( n = 5–6), respectively. Similarly, sh3 reduced perinuclear DMT1 immunostaining in transfected cells. Consistent with the assumed role of DMT1 in CdMT-1 cytotoxicity, sh3, but not the empty vector or sh5, significantly attenuated cell death induced by a 24-h exposure to 14.3 μM CdMT-1 by 35.6 ± 4.2% ( n = 13). In contrast, neither fluorescently labeled metallothionein-1 (MT-1) uptake nor free Cd2+ toxicity was altered by the effective DMT1 shRNA (sh3), indicating that cellular uptake of metal-MT-1 complexes and Cd2+-induced cell death signaling are not affected by DMT1 knockdown. Thus we conclude that endosomal/lysosomal DMT1 plays a role in renal PT CdMT-1 toxicity.

Publisher

American Physiological Society

Subject

Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3