Ca2+ influx through the osteoclastic plasma membrane ryanodine receptor

Author:

Moonga Baljit S.1,Li Sun1,Iqbal Jameel1,Davidson Robert2,Shankar Vijai S.3,Bevis Peter J. R.1,Inzerillo Angela1,Abe Etsuko1,Huang Christopher L.-H.3,Zaidi Mone1

Affiliation:

1. Mount Sinai Bone Program, Departments of Medicine and Geriatrics, Mount Sinai School of Medicine, and the Geriatric Research, Education, and Clinical Center, Bronx Veterans Affairs Medical Center, New York 10029;

2. Division of Basic Sciences, New York University Dental School, New York, New York 10010; and

3. Department of Physiology, Cambridge University, Cambridge CB2 3EG, United Kingdom

Abstract

We predict that the type 2 ryanodine receptor isoform (RyR-2) located in the osteoclastic membrane functions as a Ca2+ influx channel and as a divalent cation (Ca2+) sensor. Cytosolic Ca2+ measurements revealed Ca2+ influx in osteoclasts at depolarized membrane potentials. The cytosolic Ca2+ change was, as expected, not seen in Ca2+-free medium and was blocked by the RyR modulator ryanodine. In contrast, at basal membrane potentials (∼25 mV) ryanodine triggered extracellular Ca2+ influx that was blocked by Ni2+. In parallel, single-channel recordings obtained from inside-out excised patches revealed a divalent cation-selective ∼60-pS conductance in symmetric solutions of Ba-aspartate [Ba-Asp; reversal potential ( E rev) ∼0 mV]. In the presence of a Ba2+ gradient, i.e., with Ba-Asp in the pipette and Na-Asp in the bath, channel conductance increased to ∼120 pS and E rev shifted to 21 mV. The conductance was tentatively classified as a RyR-gated Ca2+ channel as it displayed characteristic metastable states and was sensitive to ruthenium red and a specific anti-RyR antibody, Ab34. To demonstrate that extracellular Ca2+ sensing occurred at the osteoclastic surface rather than intracellularly, we performed protease protection assays using pronase. Preincubation with pronase resulted in markedly attenuated cytosolic Ca2+ signals triggered by either Ni2+(5 mM) or Cd2+ (50 μM). Finally, intracellular application of antiserum Ab34 potently inhibited divalent cation sensing. Together, these results strongly suggest the existence of 1) a membrane-resident Ca2+ influx channel sensitive to RyR modulators; 2) an extracellular, as opposed to intracellular, divalent cation activation site; and 3) a cytosolic CaM-binding regulatory site for RyR. It is likely therefore that the surface RyR-2 not only gates Ca2+ influx but also functions as a sensor for extracellular divalent cations.

Publisher

American Physiological Society

Subject

Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3