Real-time monitoring of NKCC2 endocytosis by total internal reflection fluorescence (TIRF) microscopy

Author:

Jaykumar Ankita Bachhawat12,Caceres Paulo S.12,Sablaban Ibrahim1,Tannous Bakhos A.3,Ortiz Pablo A.12

Affiliation:

1. Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan;

2. Department of Physiology, Wayne State University, Detroit, Michigan; and

3. Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts

Abstract

The apical Na-K-2Cl cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb (TAL). The amount of NKCC2 at the apical membrane of TAL cells is determined by exocytic delivery, recycling, and endocytosis. Surface biotinylation allows measurement of NKCC2 endocytosis, but it has low time resolution and does not allow imaging of the dynamic process of endocytosis. We hypothesized that total internal reflection fluorescence (TIRF) microscopy imaging of labeled NKCC2 would allow monitoring of NKCC2 endocytosis in polarized Madin-Darby canine kidney (MDCK) and TAL cells. Thus we generated a NKCC2 construct containing a biotin acceptor domain (BAD) sequence between the transmembrane domains 5 and 6. Once expressed in polarized MDCK or TAL cells, surface NKCC2 was specifically biotinylated by exogenous biotin ligase (BirA). We also demonstrate that expression of a secretory form of BirA in TAL cells induces metabolic biotinylation of NKCC2. Labeling biotinylated surface NKCC2 with fluorescent streptavidin showed that most apical NKCC2 was located within small discrete domains or clusters referred to as “puncta” on the TIRF field. NKCC2 puncta were observed to disappear from the TIRF field, indicating an endocytic event which led to a decrease in the number of surface puncta at a rate of 1.18 ± 0.16%/min in MDCK cells, and a rate 1.09 ± 0.08%/min in TAL cells ( n = 5). Treating cells with a cholesterol-chelating agent (methyl-β-cyclodextrin) completely blocked NKCC2 endocytosis. We conclude that TIRF microscopy of labeled NKCC2 allows the dynamic imaging of individual endocytic events at the apical membrane of TAL cells.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3