Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury

Author:

Sutton Timothy A.,Kelly K. J.,Mang Henry E.,Plotkin Zoya,Sandoval Ruben M.,Dagher Pierre C.

Abstract

Tetracyclines exhibit significant anti-inflammatory properties, inhibit matrix metalloproteinases (MMPs), and are protective in models of ischemia-reperfusion injury (IRI). Both inflammatory cascades and MMP activation have been demonstrated to modulate microvascular permeability. Because increased microvascular permeability occurs during IRI in a variety of organ systems including the kidney, we hypothesized that minocycline, a semisynthetic tetracycline, would diminish microvascular leakage during renal IRI. To test this hypothesis, we used intravital 2-photon microscopy to examine leakage of fluorescent dextrans from the vasculature in a rodent model of IRI. Minocycline significantly reduced the extent of dextran (500 kDa) leakage from the renal microvasculature 24 h after ischemia. Although minocycline diminished leukocyte accumulation in the kidney following ischemia, areas of leukocyte accumulation did not correlate with areas of microvascular permeability in either the saline- or minocycline-pretreated animals. Minocycline diminished the perivascular increase in MMP-2 and MMP-9, as well as the increase in MMP-2 activity 24 h after ischemia. ABT-518, a specific inhibitor of MMP-2 and MMP-9, also significantly reduced the extent of dextran (500 kDa) leakage from the renal microvasculature 24 h after ischemia. Our results indicate that minocycline mitigates the renal microvascular permeability defect following IRI. This effect is spatially distinct from the effect of minocycline on leukocyte accumulation and may be related to diminished activity of MMPs on the integrity of the perivascular matrix.

Publisher

American Physiological Society

Subject

Physiology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3