Affiliation:
1. Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
Abstract
Onset of metabolic acidosis leads to a pronounced increase in renal expression of phosphoenolpyruvate carboxykinase (PEPCK). This response, which is mediated in part by stabilization of PEPCK mRNA, is effectively modeled by treating LLC-PK1-F+-9C cells with an acidic medium. siRNA knockdown of HuR prevented the pH-responsive increase in PEPCK mRNA half-life suggesting that HuR is necessary for this response. A recruitment assay, using a reporter mRNA in which the pH response elements of the PEPCK 3′-UTR were replaced with six MS2 stem-loop sequences, was developed to test this hypothesis. The individual recruitment of a chimeric protein containing the MS2 coat protein and either HuR or p40AUF1 failed to produce a pH-responsive stabilization. However, the concurrent expression of both chimeric proteins was sufficient to produce a pH-responsive increase in the half-life of the reporter mRNA. siRNA knockdown of AUF1 produced slight increases in basal levels of PEPCK mRNA and protein, but partially inhibited the pH-responsive increases. Complete inhibition of the latter response was achieved by knockdown of both RNA-binding proteins. The results suggest that binding of HuR and AUF1 has opposite effects on basal expression, but may interact to mediate the pH-responsive increase in PEPCK mRNA. Two-dimensional gel electrophoresis indicated that treatment with acidic medium caused a decrease in phosphorylation of HuR, but may increase phosphorylation of the multiple AUF1 isoforms. Thus, the pH-responsive stabilization of PEPCK mRNA requires the concurrent binding of HuR and AUF1 and may be mediated by changes in their extent of covalent modification.
Publisher
American Physiological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献