Renal subcapsular transplantation of hepatocyte growth factor-producing mesothelial cell sheets improves ischemia-reperfusion injury

Author:

Miyabe Yoei12,Sekiya Sachiko1,Sugiura Naoko12,Oka Masatoshi12,Karasawa Kazunori2,Moriyama Takahito2,Nitta Kosaku2,Shimizu Tatsuya1

Affiliation:

1. Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan

2. Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan

Abstract

Ischemia-reperfusion injury (IRI) is a clinically important cause of acute kidney injury leading to chronic kidney disease. Furthermore, IRI in renal transplantation still remains a risk factor for delayed graft function. Previous studies on IRI have had some limitations, and few of the studied therapies have been clinically applicable. Therefore, a new method for treating renal IRI is needed. We examined the effects of human mesothelial cell (MC) sheets and hepatocyte growth factor (HGF)-transgenic MC (tg MC) sheets transplanted under the renal capsule in an IRI rat model and compared these two treatments with the intravenous administration of HGF protein and no treatment through serum, histological, and mRNA analyses over 28 days. MC sheets and HGF-tg MC sheets produced HGF protein and significantly improved acute renal dysfunction, acute tubular necrosis, and survival rate. The improvement in necrosis was likely due to the cell sheets promoting the migration and proliferation of renal tubular cells, as observed in vitro. Expression of α-smooth muscle actin at day 14 and renal fibrosis at day 28 after IRI were significantly suppressed in MC sheet and HGF-tg MC sheet treatment groups compared with the other groups, and these effects tended to be reinforced by the HGF-tg MC sheets. These results suggest that the cell sheets locally and continuously affect renal paracrine factors, such as HGF, and support recovery from acute tubular necrosis and improvement of renal fibrosis in chronic disease.

Funder

Ministry of Education, Culture, Sports, Science, and Technology (MEXT)

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3