Eicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis

Author:

Taneda Sekiko1,Honda Kazuho1,Tomidokoro Kimiko1,Uto Kenta1,Nitta Kosaku2,Oda Hideaki1

Affiliation:

1. Department of 1Pathology and

2. Kidney Center, Department of Medicine, Tokyo Women's Medical University, Tokyo, Japan

Abstract

The present study was designed to elucidate a possible mechanism of hyperglycemia-induced tubular injury and to examine a therapeutic potential of dietary eicosapentaenoic acid (EPA) for the prevention of diabetic kidney disease. Utilizing streptozotocin-induced diabetic mice, the extents of albuminuria and histological injuries were monitored at 2 wk after diabetic induction. Reactive oxygen species (ROS) production, apoptosis, and hypoxia in the kidney were evaluated by immunohistochemistry and Western blotting. An in vitro study was performed using rat proximal tubular cells (NRK-52E) to confirm the protective effect of EPA for methylglyoxal (MG)-induced ROS generation and staurosporine (STS)-induced mitochondrial apoptosis. The extents of albuminuria and histological tubular injuries were significantly lower in EPA-treated diabetic mice compared with untreated diabetic mice. The levels of lipid peroxidation product (4-hydroxy-2-nonenal), oxidative DNA damage (8-hydoxy-deoxyguanosine), and mitochondrial apoptosis (TUNEL, caspase-9, cleaved caspase-3, and cytochrome c release) in the tubular cells were also significantly lower in EPA-treated diabetic mice. Furthermore, hypoxia-inducible factor (HIF)-1α expression was significantly upregulated in the kidney tissues from EPA-treated mice compared with untreated diabetic mice. MG-induced ROS overproduction and STS-induced mitochondrial apoptosis in NRK-52E cells were significantly reduced by EPA treatment in vitro. These results indicated that the ROS generation and mitochondrial apoptosis were involved in hyperglycemia-induced tubular injury and EPA had a beneficial effect by suppressing ROS generation and mitochondrial apoptosis partly through augmentation of an HIF-1α response in diabetic kidney disease.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3