Kidney-specific expression of human organic cation transporter 2 (OCT2/SLC22A2) is regulated by DNA methylation

Author:

Aoki Masayo,Terada Tomohiro,Kajiwara Moto,Ogasawara Ken,Ikai Iwao,Ogawa Osamu,Katsura Toshiya,Inui Ken-ichi

Abstract

Human organic cation transporter 2 (OCT2/SLC22A2), which is specifically expressed in the kidney, plays critical roles in the renal secretion of cationic compounds. Tissue expression and membrane localization of OCT2 are closely related to the tissue distribution, pharmacological effects, and/or adverse effects of its substrate drugs. However, the molecular mechanisms underlying the kidney-specific expression of OCT2 have not been elucidated. In the present study, therefore, we examined the contribution of DNA methylation of the promoter region for the OCT2 gene to its tissue-specific expression using human tissue samples. In vivo methylation status of the proximal promoter region of OCT2 and that of OCT1, a liver-specific organic cation transporter, were investigated by bisulfite sequencing using human genomic DNA extracted from the kidney and liver. All CpG sites in the OCT2 proximal promoter were hypermethylated in the liver, while hypomethylated in the kidney. On the other hand, the promoter region of OCT1 was hypermethylated in both the kidney and liver. The level of methylation of the OCT2 promoter was especially low at the CpG site in the E-box, the binding site of the basal transcription factor upstream stimulating factor (USF) 1. In vitro methylation of the OCT2 proximal promoter dramatically reduced the transcriptional activity, and an electrophoretic mobility shift assay showed that methylation at the E-box inhibited the binding of USF1. These results indicate that kidney-specific expression of human OCT2 is regulated by methylation of the proximal promoter region, interfering with the transactivation by USF1.

Publisher

American Physiological Society

Subject

Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3