Characterization of the putative phosphorylation sites of the AQP2 C terminus and their role in AQP2 trafficking in LLC-PK1 cells

Author:

Arthur Julian1,Huang Jianmin1,Nomura Naohiro1,Jin William W.1,Li Wei1,Cheng Xiang1,Brown Dennis1,Lu Hua Jenny1

Affiliation:

1. Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts

Abstract

Vasopressin (VP) stimulates a signaling cascade that results in phosphorylation and apical membrane accumulation of aquaporin-2 (AQP2), leading to water reabsorption by kidney collecting ducts. However, the roles of most C-terminal phosphorylation events in stimulated and constitutive AQP2 recycling are incompletely understood. Here, we generated LLC-PK1 cells containing point mutations of all potential phosphorylation sites in the AQP2 C terminus: S226, S229, T244, S256, S261, S264, and S269, to determine their impact on AQP2 trafficking. We produced an All Null AQP2 construct in which these serine (S) or threonine (T) residues were mutated to alanine (A) or glycine (G), and we then reintroduced the phosphorylation mimic aspartic acid (D) individually to each site in the All Null mutant. As expected, the All Null mutant does not accumulate at the plasma membrane in response to VP but still undergoes constitutive recycling, as shown by its membrane accumulation when endocytosis is blocked by methyl-β-cyclodextrin (MβCD), and accumulation in a perinuclear patch at low temperature (20°C). Single phosphorylation mimics S226D, S229D, T244D, S261D, S264D, and S269D were insufficient to cause membrane accumulation of AQP2 alone or after VP treatment. However, AQP2 S256 reintroduced into the All Null mutant maintains its trafficking response to VP. We conclude that 1) constitutive recycling of AQP2 does not require phosphorylation at any C-terminal sites; 2) forced “phosphorylation” of sites in the AQP2 C terminus is insufficient to stimulate membrane accumulation in the absence of S256 phosphorylation; and 3) phosphorylation of S256 alone is necessary and sufficient to cause membrane accumulation of AQP2.

Funder

NIH/NIDDK

Nephcure Foundation

Massachusetts General Hospital (MGH)

Publisher

American Physiological Society

Subject

Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3