Novel MAPK-dependent and -independent tubulogenes identified via microarray analysis of 3D-cultured Madin-Darby canine kidney cells

Author:

Chacon-Heszele Maria F.1,Zuo Xiaofeng1,Hellman Nathan E.1,McKenna Sarah1,Choi Soo Young1,Huang Liwei1,Tobias John W.2,Park Kwon Moo3,Lipschutz Joshua H.14

Affiliation:

1. Renal, Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;

2. Genomics Institute, Bioinformatic Core, University of Pennsylvania, Philadelphia, Pennsylvania;

3. Department of Anatomy, Kyungpook National University School of Medicine, Junggu, Daegu, Republic of Korea; and

4. Department of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania

Abstract

Cystogenesis and tubulogenesis are basic building blocks for many epithelial organs, including the kidney. Most researchers have used two-dimensional (2D) cell culture to investigate signaling pathways downstream of hepatocyte growth factor (HGF). We hypothesize that three-dimensional (3D) collagen-grown Madin-Darby canine kidney (MDCK) cells, which form cysts and then tubulate in response to HGF, are a much more in vivo-like system for the identification of novel tubulogenes. With the use of a canine microarray containing over 20,000 genes, 2,417 genes were identified as potential tubulogenes that were differentially regulated, exclusively in 3D-grown MDCK cells. Among these, 840 were dependent on MAPK signaling. Importantly, this work shows that many putative tubulogenes, previously identified via microarray analysis of 2D cultures, including by us, do not change in 3D culture and vice versa. The use of a 3D-culture system allowed for the identification of novel MAPK-dependent and -independent genes that regulate early renal tubulogenesis in vitro, e.g., matrix metalloproteinase 1 (MMP1). Knockdown of MMP1 led to defects in cystogenesis and tubulogenesis in 3D-grown MDCK cells, most likely due to problems establishing normal polarity. We suggest that data obtained from 2D cultures, even those using MDCK cells treated with HGF, should not be automatically extrapolated to factors important for cystogenesis and tubulogenesis. Instead, 3D culture, which more closely replicates the biological environment and is therefore a more accurate model for identifying tubulogenes, is preferred. Results from the present analysis will be used to build a more accurate model of the signaling pathways that control cystogenesis and tubulogenesis.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3