Cytoglobin, a novel globin, plays an antifibrotic role in the kidney

Author:

Mimura Imari1,Nangaku Masaomi1,Nishi Hiroshi1,Inagi Reiko1,Tanaka Tetsuhiro1,Fujita Toshiro1

Affiliation:

1. Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan

Abstract

Cytoglobin (Cygb), a novel member of the globin superfamily, is expressed by fibroblasts in various organs. However, its function remains unknown. Because of its localization, we speculated that a biological role of Cygb may be related to fibrogenesis. To clarify the role of Cygb in kidney fibrosis, we employed the remnant kidney model in rats. Immunohistochemical analysis showed an increase in Cygb expression in parallel with disease progression. To investigate the functional consequence of Cygb upregulation, we established transgenic rats overexpressing rat Cygb. Overexpression of Cygb improved histological injury, preserved renal function, and ameliorated fibrosis, as estimated by the accumulation of collagen I and IV as well as Masson trichrome staining. These protective effects of Cygb were associated with a decrease in nitrotyrosine deposition in the kidney and urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) excretion as a marker of oxidative stress. We also performed in vitro studies utilizing a rat kidney fibroblast cell line transiently overexpressing Cygb, an inducible kidney cell transfected with Cygb, and primary cultured fibroblasts isolated from the kidneys of the transgenic rats. These different experimental systems consistently showed that Cygb inhibited collagen synthesis. Furthermore, mutant disruption of heme in Cygb that impaired its antioxidant properties led to the loss of antifibrotic effects, suggesting that Cygb reduces fibrosis via a radical scavenging function. In conclusion, we showed that Cygb plays an important role in protection of the kidney against fibrosis via the amelioration of oxidative stress both in vitro and in vivo. Cygb might represent a good therapeutic target in chronic kidney disease.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3