Three-dimensional reconstruction of the rat nephron

Author:

Christensen Erik I.1,Grann Birgitte1,Kristoffersen Inger B.1,Skriver Elisabeth1,Thomsen Jesper S.1,Andreasen Arne1

Affiliation:

1. Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark

Abstract

This study gives a three-dimensional (3D) structural analysis of rat nephrons and their connections to collecting ducts. Approximately 4,500 2.5-μm-thick serial sections from the renal surface to the papillary tip were obtained from each of 3 kidneys of Wistar rats. Digital images were recorded and aligned into three image stacks and traced from image to image. Short-loop nephrons (SLNs), long-loop nephrons (LLNs), and collecting ducts (CDs) were reconstructed in 3D. We identified a well-defined boundary between the outer stripe and the inner stripe of the outer medulla corresponding to the transition of descending thick limbs to descending thin limbs and between the inner stripe and the inner medulla, i.e., the transition of ascending thin limbs into ascending thick limbs of LLNs. In all nephrons, a mosaic pattern of proximal tubule (PT) cells and descending thin limb (DTL) cells was observed at the transition between the PT and the DTL. The course of the LLNs revealed tortuous proximal “straight” tubules and winding of the DTLs within the outer half of the inner stripe. The localization of loop bends of SLNs in the inner stripe of the outer medulla and the bends of LLNs in the inner medulla reflected the localization of their glomeruli; i.e., the deeper the glomerulus, the deeper the bend. Each CD drained approximately three to six nephrons with a different pattern than previously established in mice. This information will provide a basis for evaluation of structural changes within nephrons as a result of physiological or pharmaceutical intervention.

Publisher

American Physiological Society

Subject

Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3