Arteriovenous conduits for hemodialysis: how to better modulate the pathophysiological vascular response to optimize vascular access durability

Author:

Shiu Yan-Ting1,Rotmans Joris I.2,Geelhoed Wouter Jan2,Pike Daniel B.1,Lee Timmy34

Affiliation:

1. Division of Nephrology, University of Utah, Salt Lake City, Utah

2. Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands

3. Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama

4. Veterans Affairs Medical Center, Birmingham, Alabama

Abstract

Vascular access is the lifeline for patients on hemodialysis. Arteriovenous fistulas (AVFs) are the preferred vascular access, but AVF maturation failure remains a significant clinical problem. Currently, there are no effective therapies available to prevent or treat AVF maturation failure. AVF maturation failure frequently results from venous stenosis at the AVF anastomosis, which is secondary to poor outward vascular remodeling and excessive venous intimal hyperplasia that narrows the AVF lumen. Arteriovenous grafts (AVGs) are the next preferred vascular access when an AVF creation is not possible. AVG failure is primarily the result of venous stenosis at the vein-graft anastomosis, which originates from intimal hyperplasia development. Although there has been advancement in our knowledge of the pathophysiology of AVF maturation and AVG failure, this has not translated into effective therapies for these two important clinical problems. Further work will be required to dissect out the mechanisms of AVF maturation failure and AVG failure to develop more specific therapies. This review highlights the major recent advancements in AVF and AVG biology, reviews major clinical trials, and discusses new areas for future research.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

U.S. Department of Veterans Affairs (VA)

Dutch Organization of Scientific Research

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3