Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats

Author:

Kim Dongun,Sands Jeff M.,Klein Janet D.

Abstract

We tested whether the abundance of transport proteins involved in the urinary concentrating mechanism was altered in rats with uncontrolled diabetes mellitus (DM). Rats were injected with streptozotocin and killed 5, 10, 14, or 20 days later. Blood glucose in DM rats was 300–450 mg/dl (control: 70–130 mg/dl). Urine volume increased in DM rats from 41 ± 7 ml/100 g body wt (BW) at 5 days to 69 ± 3 ml/100 g BW at 20 days (control: 9 ± 1). Urine osmolality of DM rats decreased at 5 days DM and remained low at 20 days. UT-A1 urea transporter protein in the inner medullary (IM) tip was 55% of control in 5-day DM rats but increased to 170, 220, and 280% at 10, 14, and 20 days DM, respectively, due to an increase in the 117-kDa glycoprotein form. UT-A1 in the IM base was increased to 325% of control at 5 days DM with no further increase at 20 days. Aquaporin-2 (AQP2) increased to 290% in the IM base at 5 days DM and 150% in the IM tip at 10 days; both showed no further increase at 20 days. NKCC2/BSC1 increased to 240% in outer medulla at 20 days DM, but not at 5 or 10 days. UT-B and ROMK were unchanged at any time point. The increases in UT-A1, AQP2, and NKCC2/BSC1 proteins during uncontrolled DM would tend to limit the loss of fluid and solute during uncontrolled diabetes.

Publisher

American Physiological Society

Subject

Physiology

Reference24 articles.

1. Aquaporin-2 and urea transporter-A1 are up-regulated in rats with Type I diabetes mellitus

2. Dysregulation of renal salt and water transport proteins in diabetic Zucker rats

3. Bradford AD, Terris J, Ecelbarger CA, Klein JD, Sands JM, Chou CL, and Knepper MA. 97- And 117-kDa forms of the collecting duct urea transporter UT-A1 are due to different states of glycosylation. Am J Physiol Renal Physiol 281: F133–F143, 2001.

4. Ecelbarger CA, Kim GH, Knepper MA, Liu J, Tate M, Welling PA, and Wade JB. Regulation of potassium channel Kir 1.1 (ROMK) abundance in the thick ascending limb of Henle's loop. J Am Soc Nephrol 12: 10–18, 2001.

5. Ecelbarger CA, Knepper MA, and Verbalis JG. Increased abundance of distal sodium transporters in rat kidney during vasopressin escape. J Am Soc Nephrol 12: 207–217, 2001.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3