Renal dopamine D1receptor dysfunction is acquired and not inherited in obese Zucker rats

Author:

Banday Anees Ahmad,Hussain Tahir,Lokhandwala Mustafa F.

Abstract

In essential hypertension, the defect in renal dopamine (DA) D1receptor function is intrinsic to proximal tubules as this phenomenon is also seen in primary proximal tubule cultures from spontaneously hypertensive rats (SHR) and essential hypertensive patients. Previously, a defect was reported in renal D1receptor function in obese Zucker rats. In the present study, we sought to determine whether this D1receptor dysfunction is intrinsic in these animals. In primary proximal tubular epithelial cells (PTECs) from lean and obese rats, DA inhibited Na-K-ATPase (NKA) activity in PTECs from both groups of rats. Basal NKA activity, D1receptor protein expression, and their coupling to G proteins were similar in cells from both groups. However, when PTECs from lean and obese rats were cultured in 20% serum from obese rats, DA failed to inhibit NKA activity, which was accompanied by a reduction in D1receptor expression and a defect in D1receptor-G protein coupling. No such defects in the inhibitory effect of DA on NKA activity, D1receptor numbers, or coupling were seen when PTECs from both lean and obese rats were grown in 20% serum from lean or rosiglitazone-treated obese (RTO) rats. RTO rat serum had normal blood glucose and reduced plasma levels of insulin compared with serum from obese rats. Furthermore, chronic insulin treatment of PTECs from lean and obese rats caused an attenuation in DA-induced NKA inhibition, a decrease in D1receptor expression, and D1receptor-G protein uncoupling. These results suggest that defective D1receptor function in obese Zucker rats is not inherited but contributed to by hyperinsulinemia and/or other circulating factors associated with obesity.

Publisher

American Physiological Society

Subject

Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3