AT1receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats

Author:

Li Xiao C.,Campbell Duncan J.,Ohishi Mitsuru,Yuan Shao,Zhuo Jia L.

Abstract

Angiotensin IV (ANG IV), an active ANG II fragment, has been shown to induce systemic and renal cortical effects by binding to ANG IV (AT4) receptors and activating unique signaling transductions unrelated to classical type 1 (AT1) or type 2 (AT2) receptors. We tested whether ANG IV exerts systemic and renal cortical effects on blood pressure, renal microvascular smooth muscle cells (VSMCs), and glomerular mesangial cells (MC) and, if so, whether AT1receptor-activated signaling is involved. In anesthetized rats, systemic infusion of ANG II, ANG III, or ANG IV (0.01, 0.1, and 1.0 nmol·kg−1·min−1iv) caused dose-dependent increases in mean arterial pressure (MAP) and decreases in renal cortical blood flow (CBF; P < 0.01). ANG II also induced dose-dependent reductions in renal medullary blood flow ( P < 0.01), whereas ANG IV did not. ANG IV-induced pressor and renal cortical vasoconstriction were completely abolished by AT1receptor blockade with losartan (5 mg/kg iv; P < 0.05). When ANG IV (1 nmol·kg−1·min−1) was infused directly in the renal artery, CBF was reduced by >30%, and the response was also blocked by losartan ( P < 0.01). In the renal cortex, unlabeled ANG IV displaced125I-labeled [Sar1,Ile8]ANG II binding, whereas unlabeled ANG II (10 μM) inhibited125I-labeled Nle1-ANG IV (AT4) binding in a concentration-dependent manner ( P < 0.01). In freshly isolated renal VSMCs, ANG IV (100 nM) increased intracellular Ca2+concentration, and the effect was blocked by losartan and U-73122, a selective inhibitor of phospholipase C/inositol trisphosphate/Ca2+signaling (1 μM). In cultured rat MCs, ANG IV (10 nM) induced mitogen-activated protein kinase extracellular/signal-regulated kinase 1/2 phosphorylation via AT1receptor- and phospholipase C-activated signaling. These results suggest that, at nanomolar concentrations, ANG IV can increase MAP and induce renal cortical effects by interacting with AT1receptor-activated signaling.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3