NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy

Author:

Satoh Minoru,Fujimoto Sohachi,Haruna Yoshisuke,Arakawa Sayaka,Horike Hideyuki,Komai Norio,Sasaki Tamaki,Tsujioka Katsuhiko,Makino Hirofumi,Kashihara Naoki

Abstract

Increased production of reactive oxygen species (ROS) in diabetes may be a common pathway linking diverse pathogenic mechanisms of diabetic vascular complications, including nephropathy. Assessment of the oxidative stress production pathway is therefore important for the prediction and prevention of diabetic complications. However, ROS production mechanisms remain unclear in diabetic glomeruli. To identify the source and determine the mechanisms of ROS production in the diabetic kidney, diabetes was induced with streptozotocin in rats. After 6 wk, glomerular ROS production had increased in the streptozotocin rat kidney, as assessed by dihydroethidium-derived chemiluminescence. ROS production was increased by the addition of NADH or l-arginine and was partially reduced by the addition of diphenylene iodonium or NG-nitro-l-arginine methyl ester, identifying NAD(P)H oxidase and nitric oxide (NO) synthase (NOS) as ROS sources. The mRNA and protein expression of endothelial NOS (eNOS), as measured by real-time RT-PCR and Western blotting, increased significantly (mRNA level, 1.3-fold; protein level, 1.8-fold). However, the dimeric form of eNOS was decreased in diabetic glomeruli, as measured by low-temperature SDS-PAGE. Production of renal ROS and NO by uncoupled NOS was imaged by confocal laser microscopy after renal perfusion of 2′,7′-dichlorofluorescein diacetate (a ROS marker) and diaminorhodamine-4M AM (a NO marker) with l-arginine. Accelerated ROS production and diminished bioavailable NO caused by NOS uncoupling were noted in the diabetic kidney. Administration of tetrahydrobiopterin (BH4), a cofactor for eNOS, reversed the decreased dimeric form of eNOS and glomerular NO production. Our results indicate that NAD(P)H oxidase and uncoupling of eNOS contribute to glomerular ROS production, mediated by the loss of BH4availability. These mechanisms are potential key targets for therapeutic interventions.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3