Urinary proteins induce lysosomal membrane permeabilization and lysosomal dysfunction in renal tubular epithelial cells

Author:

Liu Wei Jing1,Xu Bi-Hua1,Ye Lin1,Liang Dong1,Wu Hong-Luan1,Zheng Yuan-Yuan1,Deng Jian Kun1,Li Benyi1,Liu Hua-feng1

Affiliation:

1. Institute of Nephrology, Guangdong Medical College, Zhanjiang, China

Abstract

Lysosomal membrane permeabilization (LMP) has been shown to cause the release of cathepsins and other hydrolases from the lysosomal lumen to the cytosol and initiate a cell death pathway. Whether proteinuria triggers LMP in renal tubular epithelial cells (TECs) to accelerate the progression of renal tubulointerstitial injury remains unclear. In the present study, we evaluated TEC injury as well as changes in lysosomal number, volume, activity, and membrane integrity after urinary protein overload in vivo and in vitro. Our results revealed that neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 levels were significantly increased in the urine of patients with minimal change nephrotic syndrome (MCNS) and the culture supernatant of HK-2 cells treated by urinary proteins extracted from MCNS patients. Urinary protein overload also induced apoptotic cell death in HK-2 cells. Importantly, we found that lysosomal volume and number were markedly increased in TECs of patients with MCNS and HK-2 cells overloaded with urinary proteins. However, lysosome function, as assessed by proteolytic degradation of DQ-ovalbumin and cathepsin-B and cathepsin-L activities, was decreased in HK-2 cells overloaded with urinary proteins. Furthermore, urinary protein overload led to a diffuse cytoplasmic immunostaining pattern of cathepsin-B and irregular immunostaining of lysosome-associated membrane protein-1, accompanying a reduction in intracellular acidic components, which could be improved by pretreatment with antioxidant. Taken together, our results indicate that overloading of urinary proteins caused LMP and lysosomal dysfunction at least partly via oxidative stress in TECs.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3