Vasopressin-induced nitric oxide production in rat inner medullary collecting duct is dependent on V2 receptor activation of the phosphoinositide pathway

Author:

O'Connor Paul M.,Cowley Allen W.

Abstract

We previously reported that arginine vasopressin (AVP) stimulates the production of nitric oxide (NO) in inner medullary collecting duct (IMCD) via activation of V2 receptors (V2R) and the mobilization of intracellular Ca2+. The aim of this study was to determine the pathway(s) through which this response is mediated. IMCDs were dissected from male Sprague-Dawley rats and intracellular Ca2+ concentration ([Ca2+]i) and NO production were measured using a fluorescence imaging system. AVP (100 nmol/l) produced a rapid increase [Ca2+]i of 381 ± 78 nmol/l that was followed by a significant increase of NO production (166 ± 61%). The specific nonpeptide V2R antagonist OPC31260 (1 μM), but not the V1R antagonist OPC21268 (1 μM), inhibited the increase in [Ca2+]i (up to 91 ± 5%) and abolished the NO response to AVP. Both the phospholipase C inhibitor U73112 (3 μM) and the inositol ( 1 , 4 , 5 ) tri-phosphate 3 receptor blocker 2-APB (75 μM) reduced the peak [Ca2+]i response to AVP (by 65 ± 9 and 59 ± 15%, respectively) and abolished the NO response. Although forskolin (100 μM; an activator of adenylyl cyclase) elicited a moderate increase in [Ca2+]i, neither preincubation with the adenylyl cyclase inhibitor 2′-5′-dideoxyadenosine (50 μM) nor the protein kinase A (PKA) inhibitor PKA14-22 (100 μM) significantly inhibited peak [Ca2+]i in response to AVP. IMCD [Ca2+]i responses to AVP were reduced by 72 ± 8% when incubated in Ca2+-free media and could be completely abolished by preincubation with the Ca2+-ATPase inhibitor thapsigargin. We conclude that AVP-induced NO production in IMCD is dependent on V2R activation of the phosphoinositide pathway and the mobilization of Ca2+ from both intracellular and extracellular pools.

Publisher

American Physiological Society

Subject

Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3