Branching ducts similar to mesonephric ducts or ureteric buds in teratomas originating from mouse embryonic stem cells

Author:

Yamamoto Makoto,Cui Li,Johkura Kohei,Asanuma Kazuhiko,Okouchi Yasumitsu,Ogiwara Naoko,Sasaki Katsunori

Abstract

Ureteric bud epithelial cells and metanephric mesenchymal cells that comprise the metanephric kidney primordium are capable of producing nephrons and collecting ducts through reciprocal inductive interaction. Once these cells are induced from pluripotent embryonic stem (ES) cells, they have the potential to become powerful tools in the regeneration of kidney tissues. In this study, we investigated these renal primordial cells and structures in mouse ES cell outgrowths and their transplants. Gene expression essential for early kidney development was examined by RT-PCR in embryoid body (EB) outgrowths and their transplants in adult mice. Histochemical detection of kidney primordial structures and gene expression analysis coupled with laser microdissection were performed in transplant tissues. RT-PCR analysis detected gene expression of Pax-2, Lim-1, c-Ret, Emx2, Sall1, WT-1, Eya-1, GDNF, and Wnt-4 in the EB outgrowths from days 6–9 of expansion onward, and also in the teratoma tissues 14 and 28 days after transplantation. Histochemical analysis 14 days after transplantation showed that some ducts were positive for Pax-2, endo A cytokeratin, kidney-specific cadherin, and Dolichos biflorus agglutinin and that dichotomous branching of these ducts had occurred. These staining patterns and morphological features are intrinsic for mesonephric ducts and ureteric buds. In long-term survival of 28 days, Pax-2-immunoreactivity disappeared in some renal primordia-like structures, indicating their differentiation. Some ducts were accompanied by mesonephric nephron-like convoluted tubules. RT-PCR analysis of those structures collected by microdissection confirmed that they expressed kidney development-related genes. In conclusion, these data suggest the potential of ES cells to produce renal primordial duct structures and provides an insight into the regeneration of kidney tissues.

Publisher

American Physiological Society

Subject

Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances and Challenges in Kidney Organoids;Current Stem Cell Research & Therapy;2021-08-04

2. Human reconstructed kidney models;In Vitro Cellular & Developmental Biology - Animal;2021-02

3. Ureteric bud structures generated from human iPSCs;iPSCs in Tissue Engineering;2021

4. Concise review: current trends on applications of stem cells in diabetic nephropathy;Cell Death & Disease;2020-11

5. Stem cells: a potential treatment option for kidney diseases;Stem Cell Research & Therapy;2020-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3