Neurophysiological responses and adaptation following repeated bouts of maximal lengthening contractions in young and older adults

Author:

Škarabot Jakob1ORCID,Ansdell Paul1ORCID,Temesi John1,Howatson Glyn12ORCID,Goodall Stuart1ORCID,Durbaba Rade1

Affiliation:

1. Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, England, United Kingdom

2. Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa

Abstract

A bout of maximal lengthening contractions is known to produce muscle damage, but confers protection against subsequent damaging bouts, with both tending to be lower in older adults. Neural factors contribute to this adaptation, but the role of the corticospinal pathway remains unclear. Twelve young (27 ± 5 yr) and 11 older adults (66 ± 4 yr) performed two bouts of 60 maximal lengthening dorsiflexions 2 weeks apart. Neuromuscular responses were measured preexercise, immediately postexercise, and at 24 and 72 h following both bouts. The initial bout resulted in prolonged reductions in maximal voluntary torque (MVC; immediately postexercise onward, P < 0.001) and increased creatine kinase (from 24 h onward, P = 0.001), with both responses being attenuated following the second bout ( P < 0.015), demonstrating adaptation. Smaller reductions in MVC following both bouts occurred in older adults ( P = 0.005). Intracortical facilitation showed no changes ( P ≥ 0.245). Motor-evoked potentials increased 24 and 72 h postexercise in young ( P ≤ 0.038). Torque variability ( P ≤ 0.041) and H-reflex size ( P = 0.024) increased, while short-interval intracortical inhibition (SICI; P = 0.019) and the silent period duration (SP) decreased ( P = 0.001) in both groups immediately postexercise. The SP decrease was smaller following the second bout ( P = 0.021), and there was an association between the change in SICI and reduction in MVC 24 h postexercise in young adults ( R = −0.47, P = 0.036). Changes in neurophysiological responses were mostly limited to immediately postexercise, suggesting a modest role in adaptation. In young adults, neural inhibitory changes are linked to the extent of MVC reduction, possibly mediated by the muscle damage–related afferent feedback. Older adults incurred less muscle damage, which has implications for exercise prescription. NEW & NOTEWORTHY This is the first study to have collectively assessed the role of corticospinal, spinal, and intracortical activity in muscle damage attenuation following repeated bouts of exercise in young and older adults. Lower levels of muscle damage in older adults are not related to their neurophysiological responses. Neural inhibition transiently changed, which might be related to the extent of muscle damage; however, the role of processes along the corticospinal pathway in the adaptive response is limited.

Funder

N/A

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3