Disinhibition of RVLM neural circuits and regulation of sympathetic nerve discharge at peak hyperthermia

Author:

Kenney Michael J.1,Ganta Chanran K.1,Fels Richard J.1

Affiliation:

1. Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas

Abstract

Hyperthermia is a potent activator of visceral sympathetic nerve discharge (SND), and the functional integrity of the rostral ventral lateral medulla (RVLM) is critically important for sustaining sympathoexcitation at peak hyperthermia. However, RVLM mechanisms mediating SND activation to acute heat stress are not well understood. Because RVLM GABA is tonically inhibitory to sympathetic nerve outflow, it is plausible to hypothesize that disinhibition of RVLM sympathetic neural circuits, via withdrawal of GABAergic tone, may affect SND regulation at peak hyperthermia. The effect of RVLM bicuculline (BIC; GABAA receptor antagonist, 100-200 pmol) microinjections on the level of renal SND in anesthetized rats was determined after internal body temperature (Tc) had been increased to 41.5°C. Temperature-control experiments involved RVLM BIC (100–200 pmol) microinjections, with Tc maintained at 38°C. As expected, acute heating significantly increased renal SND from control levels. Bilateral RVLM BIC microinjections at 41.5°C produced immediate and significant increases in renal SND above heating-induced levels of activation. Bilateral RVLM BIC microinjections at 38°C increased renal SND to similar levels as produced by RVLM BIC microinjections after Tc had been increased to 41.5°C (heating + RVLM BIC). These results demonstrate that a considerable level of RVLM GABAergic inhibition is sustained at peak hyperthermia, an interesting physiological response profile based on the significance of SND activation to cardiovascular regulation during heat stress.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3