The effect of leptin replacement on sleep-disordered breathing in the leptin-deficient ob/ob mouse

Author:

Pho H.1,Hernandez A. B.2,Arias R. S.1,Leitner E. B.3,Van Kooten S.4,Kirkness J. P.1,Schneider H.1,Smith P. L.1,Polotsky V. Y.1,Schwartz A. R.1

Affiliation:

1. Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland;

2. Department of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Hospital, New York, New York;

3. University of Michigan Medical School, Ann Arbor, Michigan; and

4. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland

Abstract

Obese leptin-deficient ( ob/ob) mice demonstrate defects in upper airway structural and neuromuscular control. We hypothesized that these defects predispose to upper airway obstruction during sleep, and improve with leptin administration. High-fidelity polysomnographic recordings were conducted to characterize sleep and breathing patterns in conscious, unrestrained ob/ob mice (23 wk, 67.2 ± 4.1 g, n = 13). In a parallel-arm crossover study, we compared responses to subcutaneous leptin (1 μg/h) vs. vehicle on respiratory parameters during NREM and REM sleep. Upper airway obstruction was defined by the presence of inspiratory airflow limitation (IFL), as characterized by an early inspiratory plateau in airflow at a maximum level (V̇imax) with increasing effort. The severity of upper airway obstruction (V̇imax) was assessed along with minute ventilation (V̇e), tidal volume (VT), respiratory rate (RR), inspiratory duty cycle, and mean inspiratory flow at each time point. IFL occurred more frequently in REM sleep (37.6 ± 0.2% vs. 1.1 ± 0.0% in NREM sleep, P < 0.001), and leptin did not alter its frequency. V̇imax (3.7 ± 1.1 vs. 2.7 ± 0.8 ml/s, P < 0.001) and V̇e increased (55.4 ± 22.0 vs. 39.8 ± 16.4 ml/min, P < 0.001) with leptin vs. vehicle administration. The increase in V̇e was due to a significant increase in VT (0.20 ± 0.06 vs. 0.16 ± 0.05 ml, P < 0.01) rather than RR. Increases in V̇e were attributable to increases in mean inspiratory flow (2.5 ± 0.8 vs. 1.8 ± 0.6 ml/s, P < 0.001) rather than inspiratory duty cycle. Similar increases in V̇e and its components were observed in non-flow-limited breaths during NREM and REM sleep. These responses suggest that leptin stabilized pharyngeal patency and increased drive to both the upper airway and diaphragm during sleep.

Funder

HHS | National Institutes of Health (NIH)

HHS | National Institutes of Health

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3