Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure

Author:

Brothers R. Matthew12,Zhang Rong12,Wingo Jonathan E.12,Hubing Kimberly A.1,Crandall Craig G.12

Affiliation:

1. Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and

2. University of Texas Southwestern Medical Center, Dallas, Texas

Abstract

Impaired cerebral autoregulation during marked reductions in arterial blood pressure may contribute to heat stress-induced orthostatic intolerance. This study tested the hypothesis that passive heat stress attenuates dynamic cerebral autoregulation during pronounced swings in arterial blood pressure. Mean arterial blood pressure (MAP) and middle cerebral artery blood velocity were continuously recorded for ∼6 min during normothermia and heat stress (core body temperature = 36.9 ± 0.1°C and 38.0 ± 0.1°C, respectively, P < 0.001) in nine healthy individuals. Swings in MAP were induced by 70-mmHg oscillatory lower body negative pressure (OLBNP) during normothermia and at a sufficient lower body negative pressure to cause similar swings in MAP during heat stress. OLBNP was applied at a very low frequency (∼0.03 Hz, i.e., 15 s on-15 s off) and a low frequency (∼0.1 Hz, i.e., 5 s on-5 s off). For each thermal condition, transfer gain, phase, and coherence function were calculated at both frequencies of OLBNP. During very low-frequency OLBNP, transfer function gain was reduced by heat stress (0.55 ± 0.20 and 0.31 ± 0.07 cm·s−1·mmHg−1 during normothermia and heat stress, respectively, P = 0.02), which is reflective of improved cerebrovascular autoregulation. During low-frequency OLBNP, transfer function gain was similar between thermal conditions (1.19 ± 0.53 and 1.01 ± 0.20 cm·s−1·mmHg−1 during normothermia and heat stress, respectively, P = 0.32). Estimates of phase and coherence were similar between thermal conditions at both frequencies of OLBNP. Contrary to our hypothesis, dynamic cerebral autoregulation during large swings in arterial blood pressure during very low-frequency (i.e., 0.03 Hz) OLBNP is improved during heat stress, but it is unchanged during low-frequency (i.e., 0.1 Hz) OLBNP.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3