Heliox breathing equally influences respiratory mechanics and cycling performance in trained males and females

Author:

Wilkie Sabrina S.1,Dominelli Paolo B.1,Sporer Benjamin C.23,Koehle Michael S.12,Sheel A. William1

Affiliation:

1. School of Kinesiology, University of British Columbia, Vancouver, Canada;

2. Division of Sports Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and

3. Canada Sport Institute Pacific, Vancouver, Canada

Abstract

In this study we tested the hypothesis that inspiring a low-density gas mixture (helium-oxygen; HeO2) would minimize mechanical ventilatory constraints and preferentially increase exercise performance in females relative to males. Trained male ( n = 11, 31 yr) and female ( n = 10, 26 yr) cyclists performed an incremental cycle test to exhaustion to determine maximal aerobic capacity (V̇o2max; male = 61, female = 56 ml·kg−1·min−1). A randomized, single-blinded crossover design was used for two experimental days where subjects completed a 5-km cycling time trial breathing humidified compressed room air or HeO2 (21% O2:balance He). Subjects were instrumented with an esophageal balloon for the assessment of respiratory mechanics. During the time trial, we assessed the ability of HeO2 to alleviate mechanical ventilatory constraints in three ways: 1) expiratory flow limitation, 2) utilization of ventilatory capacity, and 3) the work of breathing. We found that HeO2 significantly reduced the work of breathing, increased the size of the maximal flow-volume envelope, and reduced the fractional utilization of the maximal ventilatory capacity equally between men and women. The primary finding of this study was that inspiring HeO2 was associated with a statistically significant performance improvement of 0.7% (3.2 s) for males and 1.5% (8.1 s) for females ( P < 0.05); however, there were no sex differences with respect to improvement in time trial performance ( P > 0.05). Our results suggest that the extent of sex-based differences in airway anatomy, work of breathing, and expiratory flow limitation is not great enough to differentially affect whole body exercise performance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3