Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability

Author:

Nieuwdorp Max,Meuwese Marijn C.,Mooij Hans L.,Ince Can,Broekhuizen Lysette N.,Kastelein John J. P.,Stroes Erik S. G.,Vink Hans

Abstract

The endothelial glycocalyx is increasingly considered as an intravascular compartment that protects the vessel wall against pathogenic insults. The purpose of this study was to translate an established experimental method of estimating capillary glycocalyx dimension into a clinically useful tool and to assess its reproducibility in humans. We first evaluated by intravital microscopy the relation between the distance between the endothelium and erythrocytes, as a measure of glycocalyx thickness, and the transient widening of the erythrocyte column on glycocalyx compression by passing leukocytes in hamster cremaster muscle capillaries. We subsequently assessed sublingual microvascular glycocalyx thickness in 24 healthy men using orthogonal polarization spectral imaging. In parallel, systemic glycocalyx volume (using a previously published tracer dilution technique) as well as cardiovascular risk profiles were assessed. Estimates of microvascular glycocalyx dimension from the transient erythrocyte widening correlated well with the size of the erythrocyte-endothelium gap ( r = 0.63). Measurements in humans were reproducible (0.58 ± 0.16 and 0.53 ± 0.15 μm, coefficient of variance 15 ± 5%). In univariate analysis, microvascular glycocalyx thickness significantly correlated with systemic glycocalyx volume ( r = 0.45), fasting plasma glucose ( r = 0.43), and high-density lipoprotein-cholesterol ( r = 0.40) and correlated negatively with low-density lipoprotein-cholesterol ( r = −0.41) as well as body mass index ( r = −0.45) (all P < 0.05). In conclusion, the dimension of the endothelial glycocalyx can be measured reproducibly in humans and is related to cardiovascular risk factors. It remains to be tested whether glycocalyx dimension can be used as an early marker of vascular damage and whether therapies aimed at glycocalyx repair can protect the vasculature against pathogenic challenges.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3