Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise

Author:

Jentjens Roy L. P. G.1,Wagenmakers Anton J. M.2,Jeukendrup Asker E.1

Affiliation:

1. Human Performance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; and

2. Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands

Abstract

The aim of the present study was to test the hypothesis that the oxidation rate of ingested carbohydrate (CHO) is impaired during exercise in the heat compared with a cool environment. Nine trained cyclists (maximal oxygen consumption 65 ± 1 ml · kg body wt−1 · min−1) exercised on two different occasions for 90 min at 55% maximum power ouptput at an ambient temperature of either 16.4 ± 0.2°C (cool trial) or 35.4 ± 0.1°C (heat trial). Subjects received 8% glucose solutions that were enriched with [U-13C]glucose for measurements of exogenous glucose, plasma glucose, liver-derived glucose and muscle glycogen oxidation. Exogenous glucose oxidation during the final 30 min of exercise was significantly ( P < 0.05) lower in the heat compared with the cool trial (0.76 ± 0.06 vs. 0.84 ± 0.05 g/min). Muscle glycogen oxidation during the final 30 min of exercise was increased by 25% in the heat (2.07 ± 0.16 vs. 1.66 ± 0.09 g/min; P < 0.05), and liver-derived glucose oxidation was not different. There was a trend toward a higher total CHO oxidation and a lower plasma glucose oxidation in the heat although this did not reach statistical significance ( P = 0.087 and P = 0.082, respectively). These results demonstrate that the oxidation rate of ingested CHO is reduced and muscle glycogen utilization is increased during exercise in the heat compared with a cool environment.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3