Restrained whole body plethysmography for measure of strain-specific and allergen-induced airway responsiveness in conscious mice

Author:

Lofgren Jennifer L. S.,Mazan Melissa R.,Ingenito Edward P.,Lascola Kara,Seavey Molly,Walsh Ashley,Hoffman Andrew M.

Abstract

The mouse is the most extensively studied animal species in respiratory research, yet the technologies available to assess airway function in conscious mice are not universally accepted. We hypothesized that whole body plethysmography employing noninvasive restraint (RWBP) could be used to quantify specific airway resistance (sRaw-RWBP) and airway responsiveness in conscious mice. Methacholine responses were compared using sRaw-RWBP vs. airway resistance by the forced oscillation technique (Raw-FOT) in groups of C57, A/J, and BALB/c mice. sRaw-RWBP was also compared with sRaw derived from double chamber plethysmography (sRaw-DCP) in BALB/c. Finally, airway responsiveness following allergen challenge in BALB/c was measured using RWBP. sRaw-RWBP in C57, A/J, and BALB/c mice was 0.51 ± 0.03, 0.68 ± 0.03, and 0.63 ± 0.05 cm/s, respectively. sRaw derived from Raw-FOT and functional residual capacity (Raw*functional residual capacity) was 0.095 cm/s, approximately one-fifth of sRaw-RWBP in C57 mice. The intra- and interanimal coefficients of variations were similar between sRaw-RWBP (6.8 and 20.1%) and Raw-FOT (3.4 and 20.1%, respectively). The order of airway responsiveness employing sRaw-RWBP was AJ > BALBc > C57 and for Raw-FOT was AJ > BALB/c = C57. There was no difference between the airway responsiveness assessed by RWBP vs. DCP; however, baseline sRaw-RWBP was significantly lower than sRaw-DCP. Allergen challenge caused a progressive decrease in the provocative concentration of methacholine that increased sRaw to 175% postsaline values based on sRaw-RWBP. In conclusion, the technique of RWBP was rapid, reproducible, and easy to perform. Airway responsiveness measured using RWBP, DCP, and FOT was equivalent. Allergen responses could be followed longitudinally, which may provide greater insight into the pathogenesis of chronic airway disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3