Noninvasive measurement of temperature and fractional dissociation of imidazole in human lower leg muscles using 1H-nuclear magnetic resonance spectroscopy

Author:

Yoshioka Yoshichika,Oikawa Hiroshi,Ehara Shigeru,Inoue Takashi,Ogawa Akira,Kanbara Yoshiyuki,Kubokawa Manabu

Abstract

The temperature change of the fractional dissociation of imidazole (α-imidazole) in resting human lower leg muscles was measured noninvasively using 1H-nuclear magnetic resonance spectroscopy at 3.0 and 1.5 T on five normal male volunteers aged 30.6 ± 10.4 yr (mean ± SD). Using 1H-nuclear magnetic resonance spectroscopy, water, carnosine, and creatine in the muscles could be simultaneously analyzed. Carnosine contains imidazole protons. The chemical shifts of water and carnosine imidazole protons relative to creatine could be used for estimating temperatures and α-imidazole, respectively. Using the chemical shift, the values of temperature in gastrocnemius (Gast) and soleus muscles at ambient temperature (21–25°C) were estimated to be 35.5 ± 0.5 and 37.4 ± 0.6°C (means ± SE), respectively (significantly different; P < 0.01). The estimated values of α-imidazole in these muscles were 0.620 ± 0.007 and 0.630 ± 0.013 (means ± SE), respectively (not significant). Alternation of the surface temperature of the lower leg from 40 to 10°C significantly changed the temperature in Gast ( P < 0.0001) from 38.1 ± 0.5 to 28.0 ± 1.2°C, and the α-imidazole in Gast decreased from 0.631 ± 0.003 to 0.580 ± 0.011 ( P < 0.05). However, the values of α-imidazole and the temperature in soleus muscles were not significantly affected by this maneuver. These results indicate that the α-imidazole in Gast changed significantly with alternation in muscle temperature ( r = 0.877, P < 0.00001), and its change was estimated to be 0.0058/°C.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3