Exercise-inducible factors to activate lipolysis in adipocytes

Author:

Hashimoto Takeshi1,Sato Koji1,Iemitsu Motoyuki1

Affiliation:

1. Faculty Sport & Health Science, Ritsumeikan University, Shiga, Japan

Abstract

We examined the effects of exercise training on the levels of lipid droplet (LD)-associated and mitochondria-related proteins in diet-induced obese (DIO) rats. Furthermore, we assessed putative factors induced by exercise to activate lipolysis in differentiated 3T3-L1 adipocytes. DIO Wistar male rats (age 20 wk) were divided into sedentary control (SED, n = 7) and exercise training (EX, n = 7) groups. EX animals were subjected to treadmill running (25 m/min, 1 h/day, 5 days/wk) for 6 wk. Epididymal fat was dissected and used for protein analyses. 3T3-L1 adipocytes were incubated with media containing hydrogen peroxide (H2O2), sodium-lactate, caffeine, AICAR, or SNAP (NO donor) for 6 h, or 1 mM H2O2 for 15 min, followed by incubation with normal media for up to 24 h total. Protein expression levels and lipolytic activities were biochemically assayed. Epididymal fat significantly decreased in EX animals compared with SED animals. Levels of cytochrome c oxidase (COx), perilipin, hormone sensitive lipase (HSL), and adipose triglyceride lipase (ATGL) proteins in epididymal fat pads of EX animals were significantly increased compared with those in SED animals. In 3T3-L1 cells, glycerol or fatty acid release was significantly increased by all treatments. Lactate or SNAP significantly increased PGC-1α expression, and H2O2 significantly increased COx protein levels compared with controls. Expression of perilipin, HSL, ATGL, or comparative gene identification (CGI)-58 was significantly increased by all treatments. By increasing lipolytic activity in adipocytes, the exercise-inducible factors are attractive therapeutic effectors against LD-associated metabolic diseases.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3