A methodological approach for quantifying and characterizing the stability of agitated saline contrast: implications for quantifying intrapulmonary shunt

Author:

Hackett Heather K.1,Boulet Lindsey M.1,Dominelli Paolo B.2,Foster Glen E.1ORCID

Affiliation:

1. Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada; and

2. School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

Agitated saline contrast echocardiography is often used to determine blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA). We applied indicator dilution theory to time-acoustic intensity curves obtained from a bolus injection of hand-agitated saline contrast to acquire a quantitative index of contrast mass. Using this methodology and an in vitro model of the pulmonary circulation, the purpose of this study was to determine the effect of transit time and gas composition [air vs. sulphur hexafluoride (SF6)] on contrast conservation between two detection sites separated by a convoluted network of vessels. We hypothesized that the contrast lost between the detection sites would increase with transit times and be reduced by using contrast bubbles composed of SF6. Changing the flow and/or reducing the volume of the circulatory network manipulated transit time. Contrast conservation was measured as the ratio of outflow and inflow contrast masses. For air, 53.2 ± 3.4% (SE) of contrast was conserved at a transit time of 9.25 ± 0.02 s but dropped to 16.0 ± 1.0% at a transit time of 10.17 ± 0.06 s. Compared with air, SF6 contrast conservation was significantly greater ( P < 0.05) with 114.3 ± 2.9% and 73.7 ± 3.3% of contrast conserved at a transit time of 10.39 ± 0.02 s and 13.46 ± 0.04 s, respectively. In summary, time-acoustic intensity curves can quantify agitated saline contrast, but loss of contrast due to bubble dissolution makes measuring Q̇IPAVA across varying transit time difficult. Agitated saline composed of SF6 is stabilized and may be a suitable alternative for Q̇IPAVA measurement.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

Canada Foundation for Innovation (Fondation canadienne pour l'innovation)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3