Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans

Author:

Arai T. J.,Henderson A. C.,Dubowitz D. J.,Levin D. L.,Friedman P. J.,Buxton R. B.,Prisk G. K.,Hopkins S. R.

Abstract

We hypothesized that some of the heterogeneity of pulmonary blood flow present in the normal human lung in normoxia is due to hypoxic pulmonary vasoconstriction (HPV). If so, mild hyperoxia would decrease the heterogeneity of pulmonary perfusion, whereas it would be increased by mild hypoxia. To test this, six healthy nonsmoking subjects underwent magnetic resonance imaging (MRI) during 20 min of breathing different oxygen concentrations through a face mask [normoxia, inspired O2 fraction (FiO2) = 0.21; hypoxia, FiO2 = 0.125; hyperoxia, FiO2 = 0.30] in balanced order. Data were acquired on a 1.5-T MRI scanner during a breath hold at functional residual capacity from both coronal and sagittal slices in the right lung. Arterial spin labeling was used to quantify the spatial distribution of pulmonary blood flow in milliliters per minute per cubic centimeter and fast low-angle shot to quantify the regional proton density, allowing perfusion to be expressed as density-normalized perfusion in milliliters per minute per gram. Neither mean proton density [hypoxia, 0.46(0.18) g water/cm3; normoxia, 0.47(0.18) g water/cm3; hyperoxia, 0.48(0.17) g water/cm3; P = 0.28] nor mean density-normalized perfusion [hypoxia, 4.89(2.13) ml·min−1·g−1; normoxia, 4.94(1.88) ml·min−1·g−1; hyperoxia, 5.32(1.83) ml·min−1·g−1; P = 0.72] were significantly different between conditions in either imaging plane. Similarly, perfusion heterogeneity as measured by relative dispersion [hypoxia, 0.74(0.16); normoxia, 0.74(0.10); hyperoxia, 0.76(0.18); P = 0.97], fractal dimension [hypoxia, 1.21(0.04); normoxia, 1.19(0.03); hyperoxia, 1.20(0.04); P = 0.07], log normal shape parameter [hypoxia, 0.62(0.11); normoxia, 0.72(0.11); hyperoxia, 0.70(0.13); P = 0.07], and geometric standard deviation [hypoxia, 1.88(0.20); normoxia, 2.07(0.24); hyperoxia, 2.02(0.28); P = 0.11] was also not different. We conclude that HPV does not affect pulmonary perfusion heterogeneity in normoxia in the normal supine human lung.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gas Exchange in the Lung;Seminars in Respiratory and Critical Care Medicine;2023-10

2. The Pulmonary Vasculature;Seminars in Respiratory and Critical Care Medicine;2023-10

3. Impact of Vasodilation on Oxygen-Enhanced Functional Lung MRI at 0.55 T;Investigative Radiology;2023-09

4. MR imaging of the airways;The British Journal of Radiology;2023-06-01

5. The spatial-temporal dynamics of pulmonary blood flow are altered in pulmonary arterial hypertension;Journal of Applied Physiology;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3