Effect of induced leg muscle fatigue on exertional dyspnea in healthy subjects

Author:

Sharma Pramod1,Morris Norman R.1,Adams Lewis1

Affiliation:

1. School of Allied Health Sciences/Heart Foundation Research Centre, Griffith University, Gold Coast Campus, Queensland, Australia

Abstract

The genesis of dyspnea is complex. It appears to be related to central respiratory drive although prevailing leg fatigue could independently potentiate dyspnea. We hypothesized that experimentally induced leg fatigue generates more intense exertional dyspnea for a given level of ventilatory drive. Following familiarization, 19 healthy subjects (32.2 ± 7.6 yr; 11 men) performed a 5-min treadmill test (speed: ∼4 km/h; grade: ∼25%) on two separate days randomized between control (C) and experimentally induced leg fatigue (E) achieved by repeated knee extension against 40% body weight until task failure. Oxygen uptake (V̇o2, l/min), carbon dioxide output (V̇co2, l/min), ventilation (V̇e, l/min), and respiratory rate (fR) were measured breath by breath. Heart rate (HR) and perceived dyspnea intensity (0–10 numerical scale) were recorded continuously. Data were averaged over 30-s intervals. Exertional dyspnea during E was statistically significantly higher (E vs. C: 4.2 ± 0.2 vs. 3.4 ± 0.2, P < 0.001) and accompanied by a significant increase in V̇e (E vs. C: 61.7 ± 3.7 vs. 55.3 ± 2.8, P = 0.005) and fR (E vs. C: 26.7 ± 1.0 vs. 24.2 ± 1.3, P = 0.036). Dyspnea following E remained significantly higher after allowing for the V̇e confound (ANCOVA, P = 0.003). V̇o2, V̇co2, and HR were not significantly different between two conditions. However, the slopes for dyspnea vs. V̇o2 and dyspnea vs. V̇e were similar between E and C, which suggested that gain in dyspnea per unit change in V̇o2 or V̇e was not altered by leg fatigue. These findings support the hypothesis that the intensity of exertional dyspnea is exacerbated by peripheral afferent information from fatigued leg muscles.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3