Wearable knee health system employing novel physiological biomarkers

Author:

Inan Omer T.12,Whittingslow Daniel C.23,Teague Caitlin N.1,Hersek Sinan1,Pouyan Maziyar Baran1,Millard-Stafford Mindy4,Kogler Geza F.4,Sawka Michael N.4

Affiliation:

1. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia

2. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia

3. School of Medicine, Emory University, Atlanta, Georgia

4. School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia

Abstract

Knee injuries and chronic disorders, such as arthritis, affect millions of Americans, leading to missed workdays and reduced quality of life. Currently, after an initial diagnosis, there are few quantitative technologies available to provide sensitive subclinical feedback to patients regarding improvements or setbacks to their knee health status; instead, most assessments are qualitative, relying on patient-reported symptoms, performance during functional tests, and physical examinations. Recent advances have been made with wearable technologies for assessing the health status of the knee (and potentially other joints) with the goal of facilitating personalized rehabilitation of injuries and care for chronic conditions. This review describes our progress in developing wearable sensing technologies that enable quantitative physiological measurements and interpretation of knee health status. Our sensing system enables longitudinal quantitative measurements of knee sounds, swelling, and activity context during clinical and field situations. Importantly, we leverage machine-learning algorithms to fuse the low-level signal and feature data of the measured time series waveforms into higher level metrics of joint health. This paper summarizes the engineering validation, baseline physiological experiments, and human subject studies—both cross-sectional and longitudinal—that demonstrate the efficacy of using such systems for robust knee joint health assessment. We envision our sensor system complementing and advancing present-day practices to reduce joint reinjury risk, to optimize rehabilitation recovery time for a quicker return to activity, and to reduce health care costs.

Funder

DOD | Defense Advanced Research Projects Agency (DARPA)

HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)

CHOA / GT Seed Grant

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3