Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization

Author:

Farina Dario1,Fattorini Luigi23,Felici Francesco4,Filligoi Giancarlo56

Affiliation:

1. Centro di Bioingegneria, Dipartimento di Elettronica, Politecnico di Torino, Torino 10129;

2. Dipartimento Fisiologia Umana e Farmacologia, and

3. Scuola di Medicina dello Sport, Università di Roma, and

4. Facoltà di Scienze Motorie, Istituto Universitario di Scienze Motorie, Roma 00194, Italy

5. Facoltà di Ingegneria, Dipartimento INFOCOM and

6. Centro Interdipartimentale Sistemi Biomedici, Università degli Studi, La Sapienza, Roma 00185; and

Abstract

Amplitude and frequency content of the surface electromyographic (EMG) signal reflect central and peripheral modifications of the neuromuscular system. Classic surface EMG spectral variables applied to assess muscle functions are the centroid and median power spectral frequencies. More recently, nonlinear tools have been introduced to analyze the surface EMG; among them, the recurrence quantification analysis (RQA) was shown to be particularly promising for the detection of muscle status changes. The purpose of this work was to analyze the effect of motor unit short-term synchronization and conduction velocity (CV) on EMG spectral variables and two variables extracted by RQA, the percentage of recurrence (%Rec) and determinism (%Det). The study was performed on the basis of a simulation model, which allowed changing the degree of synchronization and mean CV of a number of motor units, and of an experimental investigation of the surface EMG signal properties detected during high-force-level isometric fatiguing contractions of the biceps brachii muscle. Simulations and experimental results were largely in agreement and show that 1) spectral variables, %Rec, and %Det are influenced by CV and degree of synchronization; 2) spectral variables are highly correlated with %Det ( R = −0.95 in the simulations and −0.78 and −0.75 for the initial values and normalized slopes, respectively, in the experimental signals), and thus the information they provide on muscle properties is basically the same; and 3) variations of %Det and %Rec in response to changes in muscle properties are significantly larger than the variations of spectral variables. This study validates RQA as a means for fatigue assessment with potential advantages (such as the higher sensitivity to changes of muscle status) with respect to the classic spectral analysis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3