Carbon dioxide and pH effects on temperature-sensitive and -insensitive hypothalamic neurons

Author:

Wright Chadwick L.,Boulant Jack A.

Abstract

The preoptic-anterior hypothalamus (POAH) controls body temperature, and thermoregulatory responses are impaired during hypercapnia. If increased CO2 or its accompanying acidosis inhibits warm-sensitive POAH neurons, this could provide an explanation for thermoregulatory impairment during hypercapnia. To test this possibility, extracellular electrophysiological recordings determined the effects of CO2 and pH on the firing rates of both temperature-sensitive and -insensitive neurons in hypothalamic tissue slices from 89 male Sprague-Dawley rats. Firing rate activity was recorded in 121 hypothalamic neurons before, during, and after changing the CO2 concentration aerating the tissue slice chamber or changing the pH of the solution bathing the tissue slices. Increasing the aeration CO2 concentration from 5% (control) to 10% (hypercapnic) had no effect on most (i.e., 69%) POAH temperature-insensitive neurons; however, this hypercapnia inhibited the majority (i.e., 59%) of warm-sensitive neurons. CO2 affected similar proportions of (non-POAH) neurons in other hypothalamic regions. These CO2 effects appear to be due to changes in pH since the CO2-affected neurons responded similarly to isocapnic acidosis (i.e., normal CO2 and decreased pH) but were not responsive to isohydric hypercapnia (i.e., increased CO2 and normal pH). These findings may offer a neural explanation for some heat-related illnesses (e.g., exertional heat stroke) where impaired heat loss is associated with acidosis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference45 articles.

1. The Preoptic Area in the Hypothalamus is the Source of the Additional Respiratory Drive at Raised Body Temperature in Anaesthetised Rats

2. Acid-base alterations in heatstroke

3. Boulant JA. Hypothalamic control of thermoregulation: neurophysiological basis. In: Handbook of the Hypothalamus: Behavioral Studies of the Hypothalamus, edited by Morgane PJ and Panksepp J. New York: Dekker, 1980, p. 1–82.

4. Boulant JA. Hypothalamic neurons regulating body temperature. In: Handbook of Physiology. Environmental Physiology. Bethesda, MD: Am. Physiol. Soc, 1996, sect. 4, vol. I, chapt. 6, p. 105–126.

5. The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3