Heat acclimation-induced elevated glycogen, glycolysis, and low thyroxine improve heart ischemic tolerance

Author:

Eynan Mirit1,Knubuvetz Tanya2,Meiri Uri1,Navon Gil2,Gerstenblith Gary3,Bromberg Zohar1,Hasin Yonathan4,Horowitz Michal1

Affiliation:

1. Division of Physiology, Hadassah Schools of Dental Medicine and Medicine, The Hebrew University, and

2. Department of Physical Chemistry, Tel Aviv University, Tel Aviv 69978, Israel; and

3. Division of Cardiology, Johns Hopkins Hospital, Baltimore, Maryland 21218

4. Department of Cardiology, Hadassah University Hospital, Jerusalem 91120; and

Abstract

Based on our observations of energy sparing in heat-acclimated (AC) rat hearts, we investigated whether changes in preischemic glycogen level, glycolytic rate, and plasma thyroxine level mediate cardioprotection induced in these hearts during ischemia-reperfusion insults. Control (C) (24°C), AC (34°C, 30 days), acclimated-euthyroid (34°C + 3 ng/ml l-thyroxine), and control hypothyroid (24°C + 0.02% 6- n-propyl-2-thiouracil) groups were studied. Preischemic glycogen was higher in AC than in C hearts [39.0 ± 8.5 vs. 19.2 ± 4.2 (SE) μmol glucose/g wet wt; P < 0.0006], and the lactate produced vs. glycogen level during total ischemia (13C-NMR spectroscopy) was markedly slower (AC: −0.82 x, r = 0.98 vs. C: −4.7 x, r = 0.9). Time to onset of ischemic contracture was lengthened, and the fraction of hearts experiencing ischemic contracture was lowered. Pulse pressure recovery was improved in AC compared with C animals before, but not after, absolute sodium iodoacetate-induced glycolysis inhibition. Acclimated-euthyroid hearts exhibited decreased ischemic tolerance, whereas induced hypothyroidism in C improved cardiotolerance. Thus higher preischemic glycogen and slowed glycolysis are associated with hypothyroidism and are likely important mediators of the improved ischemic tolerance exhibited by AC hearts.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3