Effect of episodic hypoxia on the susceptibility to hypocapnic central apnea during NREM sleep

Author:

Chowdhuri Susmita12,Shanidze Irina2,Pierchala Lisa2,Belen Daniel2,Mateika Jason H.123,Badr M. Safwan123

Affiliation:

1. Medical Service, John D. Dingell Veterans Affairs Medical Center, and

2. Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, and

3. Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan

Abstract

We hypothesized that episodic hypoxia (EH) leads to alterations in chemoreflex characteristics that might promote the development of central apnea in sleeping humans. We used nasal noninvasive positive pressure mechanical ventilation to induce hypocapnic central apnea in 11 healthy participants during stable nonrapid eye movement sleep before and after an exposure to EH, which consisted of fifteen 1-min episodes of isocapnic hypoxia (mean O2 saturation/episode: 87.0 ± 0.5%). The apneic threshold (AT) was defined as the absolute measured end-tidal Pco2 (PetCO2) demarcating the central apnea. The difference between the AT and baseline PetCO2 measured immediately before the onset of mechanical ventilation was defined as the CO2 reserve. The change in minute ventilation (V̇I) for a change in PetCO2 (ΔV̇I/ ΔPetCO2) was defined as the hypocapnic ventilatory response. We studied the eupneic PetCO2, AT PetCO2, CO2 reserve, and hypocapnic ventilatory response before and after the exposure to EH. We also measured the hypoxic ventilatory response, defined as the change in V̇I for a corresponding change in arterial O2 saturation (ΔV̇I/ΔSaO2) during the EH trials. V̇I increased from 6.2 ± 0.4 l/min during the pre-EH control to 7.9 ± 0.5 l/min during EH and remained elevated at 6.7 ± 0.4 l/min the during post-EH recovery period ( P < 0.05), indicative of long-term facilitation. The AT was unchanged after EH, but the CO2 reserve declined significantly from −3.1 ± 0.5 mmHg pre-EH to −2.3 ± 0.4 mmHg post-EH ( P < 0.001). In the post-EH recovery period, ΔV̇I/ΔPetCO2 was higher compared with the baseline (3.3 ± 0.6 vs. 1.8 ± 0.3 l·min−1·mmHg−1, P < 0.001), indicative of an increased hypocapnic ventilatory response. However, there was no significant change in the hypoxic ventilatory response (ΔV̇I/ΔSaO2) during the EH period itself. In conclusion, despite the presence of ventilatory long-term facilitation, the increase in the hypocapnic ventilatory response after the exposure to EH induced a significant decrease in the CO2 reserve. This form of respiratory plasticity may destabilize breathing and promote central apneas.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3